

To be paid as a one-time payment
View all plans

To be paid as a one-time payment
View all plans

Links are also in the description of the video.

For Video Solution of JEE Adv. 2021 Physics Paper-2 Click on below link

Solution on Website:-
https://physicsaholics.com/home/courseDetails/69

Solution on
YouTube:-

JEE Advanced 2021 Paper - 2

Physics Answer Key \& Solutions

By
PRATEEK JAIN SIR

JEE Adv. 2021 (P-2)

Q1) One end of a horizontal uniform beam of weight W and length L is hinged on a vertical wall at point O and its other end is supported by a light inextensible rope. The other end of the rope is fixed at point Q , at a height L above the hinge at point O . A block of weight αW is attached at the point P of the beam, as shown in the figure (not to scale). The rope cansustain a maximum tension of $(2 \sqrt{ } 2) \mathrm{W}$. Which-of the following statement(s) is(are) correct?
(A) The vertical component of reaction force at O does not depend on a
L (B) The horizontal component of reaction force at O is equal to W for $\alpha=0.5$
(C) The tension in the rope is $2 W$ for $\alpha=0.5$
(D) The rope breaks if $a>1.5$

Ans. A, B, D
To break rope

$$
\begin{array}{cc}
\Gamma_{p}=0 & >2 \sqrt{2} \omega \\
F_{y \notin}=\omega \in & \sqrt{2} \omega\left(\alpha+\frac{1}{2}\right)>2 \sqrt{2} \omega \\
F_{y}=\frac{\omega}{2} & \alpha>\frac{3}{2} \\
\frac{\omega}{2}+\frac{1}{\sqrt{2}}=\omega+\alpha \omega \\
T=\sqrt{2}\left(\frac{\omega}{2}+\alpha \omega\right)=\sqrt{2} \omega\left(\alpha+\frac{1}{2}\right)
\end{array}
$$

JEE Adv. 2021 (P-2)
Q2) A source, approaching with speed u towards the open end of a stationary pipe of length L, is emitting a sound of frequency f_{s}. The farther end of the pipe is closed. The speed of sound in air is v and f_{0} is the fundamental frequency of the pipe. For which of the following combinations) of u and f_{s}, will the sound reaching the pipe lead to a resonance?
(D) $u=0.5 v$ and $f_{s}=1.5 f_{0}$

$$
\begin{aligned}
\Rightarrow \quad f_{u} & =0.8 \mathrm{~V} \\
\Rightarrow \quad & v=\frac{V}{0.2 \gamma} f_{s}=5 \mathrm{Fs}_{5} \\
v & =2.5 f_{5}=3 f_{0}
\end{aligned}
$$

$$
V=\frac{V+V_{0}^{0}}{V-V_{s}} \nu_{0}
$$

Difficulty Level: Moderate

Ans. A, D

Q3) For a prism of prism angle $\theta=60^{\circ}$, the refractive indices of the left half and the right half are, respectively, n_{1} and $n_{2}\left(n_{2} \geq n_{1}\right)$ as shown in the figure. The angle of incidence i is chosen such that the incident light rays will have minimum deviation if $n_{1}=n_{2}=n=1.5$, For the case of unequal refractive indices, $\underline{n_{1}}=n$ and $n_{2}=n+\Delta n$ (where $\Delta n \ll n$), the angle of emergence $e=i+\Delta e$. Which of the following statement(s) is(are) correct?
A) The value of Δe (in radians) is greater than that of Δn
$L(B) \Delta e$ is proportional to Δn
(C) Δ e lies between 2.0 and 3.0 milliradians, if $\triangle n=2.8 \times 10^{-3}$
(D) Δe lies between 1.0 and 1.6 milliradians, if $\Delta n=2.8 \times 10^{-3}$

Ans. B, C

$$
\begin{aligned}
& \gamma_{1}+\gamma_{2}=f \\
& 2 \gamma=60
\end{aligned}
$$

$$
\begin{aligned}
& 1 \gamma=60 \\
& 2 \gamma=30^{\circ}
\end{aligned}
$$ $\sin i=\frac{3}{4}$

$$
n=1.5
$$

when x is very small $\cos x \approx 1$ $\sin x \approx x$

$$
\begin{gathered}
n_{2} \sin 30^{\circ}=1 \sin (i+\Delta e) \\
(n+\Delta n) \frac{1}{2}=\sin i \cos \Delta e+\cos i \sin \Delta e \\
\left(\frac{3}{2}+\Delta n\right)_{\frac{1}{2}}^{\frac{3}{4}} \times \frac{3}{4}+\sqrt{1-\left(\frac{3}{4}\right)^{2}} \Delta e \\
\frac{\Delta n}{2}=\frac{36}{4}+\frac{\sqrt{7}}{4} \Delta e \\
\Delta e=\frac{2 \Delta n}{\sqrt{7}} \frac{2}{2.6} \Delta n=\frac{2}{2.6} 2 \mathrm{mrad} \\
\left(\frac{2.6}{2.6}\right) 2 \operatorname{mrad}
\end{gathered}
$$

7 Paynting VectodEE Adv. 2021 (P-2)
$\vec{S} \quad(\vec{E} \times \vec{B})$ (instantaneous intensity)
Q4) A physical quantity \vec{S} is defined as $\vec{S}=(\vec{E} \times \vec{B}) / \mu_{0}$, where \vec{E} is electric field, \vec{B} is magnetic field and μ_{0} is the permeability of free space. The dimensions of \vec{S} are the same as the dimensions of which of the following quantity(ies)?

(B) $\frac{\text { Force }}{\text { Length } \times \text { time }}$

$$
\begin{aligned}
& =\frac{E=\frac{1}{A t}=\frac{p}{A}}{}=\frac{J}{m^{2} S} \\
& =\frac{N m A}{m^{2} S}
\end{aligned}
$$

Ans. B, D

Q5) A heavy nucleus N, at rest, undergoes fission $N \rightarrow P+Q$, where P and Q are two lighter nuclei. Let $\delta=M_{N}-M_{P}-M_{Q}$, where M_{P}, M_{Q} and M_{N} are the masses of P, Q and N, respectively. E_{P} and E_{Q} are the kinetic energies of P and Q, respectively. The speeds of P and Q are v_{p} and v_{Q}, respectively. If c is the speed of light, which of the following statement(s) is(are) correct?

$$
\text { (A) } E_{P}+E_{Q}=c^{2} \delta
$$

(B) $E_{P}=\left(\frac{M_{P}}{M_{P}+M_{Q}}\right) \varepsilon^{2} \delta$
(C) $\frac{v_{P}}{v_{\phi}}=\frac{M_{Q}}{M_{P}}$
(D) The magnitude of momentum for P as well as Q is $c \sqrt{2 \mu \delta}$, where μ
$=\left(\frac{M_{P} M_{Q}}{M_{P}+M_{Q}}\right)$

Ans. A, C, D

$$
\begin{array}{ll}
p_{p}=\sqrt{2 E_{p} m_{p}} & p=\sqrt{2 k m} \\
=\sqrt{\frac{2 m_{Q} \delta \tau^{2} m_{p}}{m_{p}-m_{Q}}} & \sqrt{2 E_{p} m_{p}}=p_{Q} \\
=\sqrt{2 E_{Q} m_{Q}} \\
=\sqrt{2 \mu_{\delta}} & E_{p}=\frac{m_{p}\left(\delta c_{Q}^{2}\right)}{m_{p}+m_{Q}}
\end{array}
$$

JEE Adv. 2021 (P-2)

Q6) Two concentric circular loops, one of radius R and the other of radius $2 R$, lie in the xy-plane with the origin as their common center, as shown in the figure. The smaller loop carries current I_{1} in the anti-clockwise direction and the larger loop carries current I_{2} in the clockwise direction, with $I_{2} \geqslant 2 I_{1}, \vec{B}(x, y)$ denotes the magnetic field at a point (x, y) in the xy-plane. Which of the following statement(s) is(are) correct?
(LA) $\vec{B}(x, y)$ is perpendicula to the xy-plane at anf point in the plane (B) $|\vec{B}(x, y)|$ depends on x and y only through the radial distance $r=\sqrt{x^{2}+y^{2}}$
(区) $|\vec{B}(x, y)|$ is non-zero at all points for $r<\mathrm{R}$
(D) $\vec{B}(x, y)$ points normally outward from the xy-
 plane for all thepoints between the two loops

Difficulty Level: Moderate

Ans. A, B

A soft plastic bottle, filled with water of density $1 \mathrm{gm} / \mathrm{cc}$, carries an inverted glass test-tube with some air (ideal gas) trapped as shown in the figure. The test-tube has a mass of 5 gm , and it is made of a thick glass of density $2.5 \mathrm{gm} / \mathrm{cc}$. Initially the bottle is sealed at atmospheric pressure $p_{0}=10^{5} \mathrm{~Pa}$ so that the volume of the trapped air is $v_{0}=3.3 \mathrm{cc}$. When the bottle is squeezed from outside at constant temperature, the pressure inside rises and the volume of the trapped air reduces. It is found that the test tube begins to sink at pressure $p_{0}+\Delta p$ without changing its orientation. At this pressure, the volume of the trapped air is v_{0} $-\Delta v$. Let $\Delta v=X$ cc and $\Delta p=Y \times 10^{3} \mathrm{~Pa}$.

Q7) The value of X is

(Dig $g+N=F_{B}$

Q8) The value of Y is 10.00

Ans 7: 0.30
Ans 8: 10.00
whiny sinking

$$
\begin{aligned}
& \frac{P V_{1}}{P_{i} V_{j}}=P_{f} V_{f} \\
& P_{0} V_{0}=\left(P_{0}+\Delta P\right)\left(V_{0}-\Delta V\right) \\
& 10^{5} R_{0}^{3.38 c}=\left(10^{5}+\Delta P\right)(3.3-0.3) \\
& 1.1 \times 10^{5}-10^{5}=\Delta P \\
& 0.1 \times 10^{5}=\Delta P=10 \times 10^{3} P_{0}
\end{aligned}
$$

A pendulum consists of a bob of mass $m=0.1 \mathrm{~kg}$ anda massless inextensible string of length $L=1.0 \mathrm{~m}$. It is suspended from a fixed point at height $H=0.9 \mathrm{~m}$ above a frictionless horizontal floor. Initially, the bob of the pendulum is lying on the floor at rest vertically below the point of suspension. A horizontal impulse $P=$ $0.2 \mathrm{~kg}-\mathrm{m} / \mathrm{s}$ is imparted to the bob at some instant. After the bob slides for some distance, the string becomes taut and the bob lifts off thefloor. The magnitude of the angular momentum of the pendulun about the point of suspension just before the bob lifts off is $J \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}$. The kinetic energy of the pendulum just after the liftoff is K Joules

Q9) The value of J is 0.18 .

Q10) The value of K is \qquad

Ans 9: 0.18
Ans 10: 0.16

$$
\begin{aligned}
k \cdot E & =\frac{(P \cos \theta)^{2}}{2 m} \\
& =\frac{p^{2} \cos ^{2} a}{0.2 m} \\
& =\frac{0,0.4 \times 0.81}{x \times 0,1}=0.164
\end{aligned}
$$

$$
\lambda_{r m s, R}=i_{r m s} R
$$

In a circuit, a metal filament lamp is connected in series with a capacitor of capacitance $C \mu F$ across a $200 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. The power consumed by the lamp is 500 W while the voltage drop across it is 100 V . Assume that there is no inductive load in the circuit. Take rms values of the voltages. The magnitude of the phase-angle (in degrees) between the current and the supply voltage is φ. Assume, $\pi \sqrt{3} \approx 5$.

Q11) The value of C is

Q12) The value of p is 90.00

$$
R=\frac{20}{100 \times 185}
$$

$$
\sqrt{R=200550}
$$

Difficulty Level: Moderate

Ans 11: 100.00
Ans 12: 60.00

$$
X_{c}=\frac{1}{\omega c} \quad \begin{aligned}
\omega & =2 \pi f \\
\omega & =2 \pi \times 50 \\
\omega & =100 \pi
\end{aligned}
$$

$$
V_{r m s, c}=i_{r m s} x_{c}
$$

$$
\begin{aligned}
& \operatorname{tam} \phi=\frac{V_{0 c}}{V_{0 R}}=\frac{I_{0} X_{c}}{I_{0} 0} \xrightarrow{V_{0 K}} \xrightarrow{\rightarrow} \rightarrow I_{0} \\
& \tan \phi=\frac{x_{C}}{R} \rightarrow 0 \\
& \tan \phi=\sqrt{3} V_{0} \mathbb{N}-\mathbb{V}_{0} \\
& \beta=60^{\circ}
\end{aligned}
$$

Paragraph (Q13to Q14)

JEE Adv. 2021 (P-2)

A special metal S conducts electricity without any resistance. A ctosed wire loop, made of S, does not allow any change in flux through itself by inducing a suitable current to generate a compensating flux. The induced current in the loop cannot decay due to its zero resistance. This current gives rise to a magnetic moment which in turn repels the source of magnetic field or flux. Consider such a loop, of radius a, with its center at the origin. A magnetic dipole of moment m is brought along the axis of this loop from
infinity to a point at distance $r(\gg a)$ from the center of the loop with its north pole always facing the loop, as shown in the figure below.

$$
\vec{B}=\frac{2 k^{\prime} m}{\gamma-3}
$$

The magnitude of magnetic field of a dipole \bar{m}, at a point on its axis at distance r, is $\frac{\mu_{0}}{2 \pi} \frac{m}{r^{3}}$ where μ_{0} is the permeability of free space. The magnitude of the force between two magnetic dipoles with moments, m_{1} and m_{2}, separated by a distance r on the common axis, with their north poles facing each other, is $\frac{k m_{1} m_{2}}{r^{4}}$, where k is a constant of appropriate dimensions. The direction of this force is along the line joining the two dipoles.

Q13) When the dipole m is placed at a distance r from the center of the loop (as shown in the figure), the current induced in the loop will be proportional to

Ans. A $m_{2} \rightarrow$ not Constant

$$
\begin{aligned}
& m_{2}=B_{2} A_{2} \\
& F_{\text {ent }}=F_{12} \\
& =\frac{\mu_{0} I_{2}}{2 q} \pi a^{2} \\
& d W_{\text {int }}=-F_{\text {ent }} d \gamma=\frac{\mu_{0} \pi}{2} 9 \frac{9}{\pi} \frac{m}{\gamma^{3}} \\
& \omega_{\text {ent }}=\frac{-k m^{2} \mu_{0} a^{2}}{2} \int^{\gamma} \frac{d r}{\gamma^{\gamma}} m_{2}=\frac{\mu_{0} a^{2}}{2} \frac{\mu^{2}}{\gamma^{3}} \\
& \omega_{\text {ent }}=\frac{-k m^{2} M_{0} a^{2}}{-6}\left(\frac{1}{\gamma^{6}}\right]_{\infty}^{\gamma^{2}} \\
& =\neq \frac{k m^{2} n_{0} a^{2}}{f^{6}} \frac{1}{r^{6}} \alpha \frac{\infty}{r^{6}}
\end{aligned}
$$

JEE Adv. 2021 (P-2)

Q14) The work done in bringing the dipole from infinity to a distance r from the center of the loop by the given process is proportional to
(A) m / r^{5}
(B) m^{2} tr ${ }^{5}$

Ans. C

Paragraph (Q15 to Q16)
JEE Adv. 2021 (P-2)
A thermally insulating cylinder has a thermally insulating and frictionless movable partition in the middle, as shown in the figure below. On each side of the partition, there is one mole of an ideal gas, with specific heat at constant volume, $C_{V}=2 R$. Here, R is the gas constant. Initially, each side has a volume V_{0} and temperature T_{0}. The left side has an electric heater, which is turned on at very low power to transfer heat Q to the gas on the left side. As a result the partition moves slowly towards the right reducing the right side volume to $V_{0} / 2$. Consequently, the gas temperatures on the left and the right sides become T_{L} and T_{R}, respectively. Ignore the changes in the temperatures of the cylinder, heater and the partition.

JEE Adv. 2021 (P-2)
Q15) The value of $\frac{T_{R}}{T_{0}}$ is
(A) $\sqrt{2}$
(B) $\sqrt{ } 3$

$$
T v v=\operatorname{con} \pi
$$

$$
\begin{gathered}
C_{V}=3 R \\
C p=C R+R=3 R \\
D=\frac{C R N}{C N} \frac{3}{2} \\
2 H=1 / 2
\end{gathered}
$$

(C) 2
$\begin{aligned} & \text { (D) } 3^{0}=1 c_{v}\left(T_{R}-T_{2}\right. \\ &+\omega_{R}\end{aligned}$

Ans. A
Since Partition is ins eq ${ }^{\text {bm }}$

$$
p=\frac{n R T}{V}
$$

$$
\begin{gathered}
P_{R}=P_{L} \\
\frac{1 R T_{R}}{\frac{3 V_{0}}{2}}=\frac{1 R T_{L}}{\frac{V_{0}}{2}} \\
T_{R}=3 T_{L}=3 \sqrt{2} T_{0}
\end{gathered}
$$

JEE Adv. 2021 (P-2)
Q16) The value of $\left(\frac{Q}{R T_{0}}\right)$ is
(A) $4(2 \sqrt{ } 2+1) \quad($ (B) $4(2,1)(5 \sqrt{2}+1) \quad(D)(5 \sqrt{ } 2-1)$ $\frac{Q}{C v T_{0}}=2+2$
$\left.\frac{R T_{0}}{R}=2,1\right)$
Difficulty Level: Difficult

Ans. B

JEE Adv. 2021 (P-2)
Q17) In order to measure the internal resistance r_{1} of a cell of emf E, a meter bridge of wire resistance $R_{0}=50 \Omega$, a resistance $R_{0} / 2$, another cell of emf $E / 2$ (internal resistance r) and a galvanometer G are used in a circuit, as shown in the figure. If the null point is found at $l=72 \mathrm{~cm}$, then the value of $r_{1}=3 \Omega$.

Ans. 3

$$
\begin{gathered}
\nexists=\frac{1.56 \not Z R_{0}}{1.5 R_{0}+\gamma_{1}} \\
1.5 R_{0}+\gamma_{1}=1.5\left(R_{0}\right. \\
\gamma_{1}=0.06 R_{0} \\
\gamma_{1}=0.06 \times 50=3 \Omega
\end{gathered}
$$

Q18) The distance between two stars of masses $3 M_{S}$ and $6 M_{S}$ is $9 R$. Here R is the mean distance between the centers of the Earth and the Sun, and M_{S} is the mass of the Sun. The two stars orbit around their common center of mass in circular orbits with period $n T$, where T is the period of Earth's revolution around the Sun.

Ans. 9

$$
\begin{aligned}
& \omega^{\prime}=\sqrt{\frac{G\left(m_{1}+m_{2}\right)}{2 d^{3}}} \\
& F g=\frac{G M_{1} m_{2}}{d^{2}} \\
& \Gamma_{-F}=M_{2} \omega^{2}(3 R) \\
& \mathrm{Fg}_{\mathrm{g}}=\mathrm{F}_{\mathrm{C}} \mathrm{f} \\
& \frac{G M, m_{r}}{d^{2}}=M_{2} \omega^{2}(3 R) \\
& \sqrt{\frac{G M_{1}}{81 R^{2} \times 3 R}}=\omega^{\prime}=\sqrt{\frac{G \nexists m_{5}}{81 R^{3} \times \beta}}=\frac{1}{9} \sqrt{\frac{G M_{5}}{k^{3}}}
\end{aligned}
$$

$$
n v_{2}=?
$$

Q19) In a photoemission experiment, the maximum kinetic energies of photoelectrons from metals P, Q and R are E_{P}, E_{σ} and E_{R}, respectively, and they are related by $E_{P}=2 E_{Q}=2 E_{R}$. In this experiment, the same source of monochromatic light is used for metals P and Q while a different source of monochromatic light is used for the metal R. The work functions formetals P, Q and R are $4.0 \mathrm{eV}, 4.5 \mathrm{eV}$ and 5.5 eV , respectively. The energy of the incident photon used for metal R, inc V, is \qquad

$$
\varnothing_{2}=4.5 \mathrm{eV}
$$

$$
\varnothing_{R}=5.5 \mathrm{eV}
$$

Difficulty Level: Easy

Ans. 6

$$
\begin{aligned}
& E_{p}=2 E_{R} \quad K_{\text {max }}=h \nu-\phi \\
& h \nu_{1}-4=2 h \nu_{1}-9 \\
& 5=h \nu_{1} \\
& G_{p}=h \nu_{1}-4 \\
& E_{R}=h \nu_{1}-4.5 \\
& \epsilon_{R}=h \nu_{2}-S .5 \\
& h \nu_{2}=E_{R}+5.5=E_{2}+5.5=h \nu_{1}-4.5+5.5 \\
& h \nu_{2}=\omega \nu_{1}+1 \\
& h \nu_{2}=s+1=6 e V
\end{aligned}
$$

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
x Personal Coach
X Study Planner

24 months
No cost EMI
18 months
No cost EMI

12 months
No cost EMI
₹2,888/mo
+10\% OFF ₹ 34,650
$>$
₹4,200/mo
+10\% OFF ₹ 25,200

To be paid as a one-time payment View all plans

For Video Solution of JEE Adv. 2021 Physics Paper-2 Click on below link

Solution on Website:-
https://physicsaholics.com/home/courseDetails/69

Solution on
YouTube:-

Links are also in the description of the video.

Chalo

